Artwork

Indhold leveret af SE Radio Team and [email protected] (SE-Radio Team). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af SE Radio Team and [email protected] (SE-Radio Team) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

SE Radio 698: Srujana Merugu on How to build an LLM App

1:18:30
 
Del
 

Manage episode 523468964 series 215
Indhold leveret af SE Radio Team and [email protected] (SE-Radio Team). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af SE Radio Team and [email protected] (SE-Radio Team) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode of Software Engineering Radio, Srujana Merugu, an AI researcher with decades of experience, speaks with host Priyanka Raghavan about building LLM-based applications. The discussion begins by clarifying essential concepts like generative vs. predictive AI, pre-training vs. fine-tuning, and the transformer architecture that powers modern LLMs.

Srujana explains diffusion models and vision transformers, highlighting how multimodal AI is reshaping content creation. The conversation then moves to practical aspects—where LLMs make sense, where they don't, and a decision framework for evaluating use cases. They explore common application patterns such as retrieval-augmented generation (RAG) and agentic architectures, breaking down components like planners, orchestrators, memory, and tools. Key considerations for model selection, evaluation metrics, and safety guardrails are discussed in depth. The episode also touches on prompting strategies, automated prompt optimization, and emerging trends like multi-sensory AI and the "Internet of Senses." Finally, Srujana shares tips on staying current in a fast-moving AI landscape and emphasizes lifelong learning and curated knowledge sources.

  continue reading

1059 episoder

Artwork
iconDel
 
Manage episode 523468964 series 215
Indhold leveret af SE Radio Team and [email protected] (SE-Radio Team). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af SE Radio Team and [email protected] (SE-Radio Team) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode of Software Engineering Radio, Srujana Merugu, an AI researcher with decades of experience, speaks with host Priyanka Raghavan about building LLM-based applications. The discussion begins by clarifying essential concepts like generative vs. predictive AI, pre-training vs. fine-tuning, and the transformer architecture that powers modern LLMs.

Srujana explains diffusion models and vision transformers, highlighting how multimodal AI is reshaping content creation. The conversation then moves to practical aspects—where LLMs make sense, where they don't, and a decision framework for evaluating use cases. They explore common application patterns such as retrieval-augmented generation (RAG) and agentic architectures, breaking down components like planners, orchestrators, memory, and tools. Key considerations for model selection, evaluation metrics, and safety guardrails are discussed in depth. The episode also touches on prompting strategies, automated prompt optimization, and emerging trends like multi-sensory AI and the "Internet of Senses." Finally, Srujana shares tips on staying current in a fast-moving AI landscape and emphasizes lifelong learning and curated knowledge sources.

  continue reading

1059 episoder

Todos los episodios

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil