Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !
Gå offline med appen Player FM !
Cutting-Edge Data Engineering at Teya with Alexandre Magno Lima Martins
MP3•Episode hjem
Manage episode 433104207 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Data engineering is constantly evolving and staying ahead means mastering tools like Apache Airflow. In this episode, we explore the world of data engineering with Alexandre Magno Lima Martins, Senior Data Engineer at Teya. Alexandre talks about optimizing data workflows and the smart solutions they've created at Teya to make data processing easier and more efficient. Key Takeaways: (02:01) Alexandre explains his role at Teya and the responsibilities of a data platform engineer. (02:40) The primary use cases of Airflow at Teya, especially with dbt and machine learning projects. (04:14) How Teya creates self-service DAGs for dbt models. (05:58) Automating DAG creation with CI/CD pipelines. (09:04) Switching to a multi-file method for better Airflow performance. (12:48) Challenges faced with Kubernetes Executor vs. Celery Executor. (16:13) Using Celery Executor to handle fast tasks efficiently. (17:02) Implementing KEDA autoscaler for better scaling of Celery workers. (19:05) Reasons for not using Cosmos for DAG generation and cross-DAG dependencies. (21:16) Alexandre's wish list for future Airflow features, focusing on multi-tenancy. Resources Mentioned: Alexandre Magno Lima Martins - https://www.linkedin.com/in/alex-magno/ Teya - https://www.linkedin.com/company/teya-global/ Apache Airflow - https://airflow.apache.org/ dbt - https://www.getdbt.com/ Kubernetes - https://kubernetes.io/ KEDA - https://keda.sh/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
39 episoder
Cutting-Edge Data Engineering at Teya with Alexandre Magno Lima Martins
The Data Flowcast: Mastering Airflow for Data Engineering & AI
MP3•Episode hjem
Manage episode 433104207 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Data engineering is constantly evolving and staying ahead means mastering tools like Apache Airflow. In this episode, we explore the world of data engineering with Alexandre Magno Lima Martins, Senior Data Engineer at Teya. Alexandre talks about optimizing data workflows and the smart solutions they've created at Teya to make data processing easier and more efficient. Key Takeaways: (02:01) Alexandre explains his role at Teya and the responsibilities of a data platform engineer. (02:40) The primary use cases of Airflow at Teya, especially with dbt and machine learning projects. (04:14) How Teya creates self-service DAGs for dbt models. (05:58) Automating DAG creation with CI/CD pipelines. (09:04) Switching to a multi-file method for better Airflow performance. (12:48) Challenges faced with Kubernetes Executor vs. Celery Executor. (16:13) Using Celery Executor to handle fast tasks efficiently. (17:02) Implementing KEDA autoscaler for better scaling of Celery workers. (19:05) Reasons for not using Cosmos for DAG generation and cross-DAG dependencies. (21:16) Alexandre's wish list for future Airflow features, focusing on multi-tenancy. Resources Mentioned: Alexandre Magno Lima Martins - https://www.linkedin.com/in/alex-magno/ Teya - https://www.linkedin.com/company/teya-global/ Apache Airflow - https://airflow.apache.org/ dbt - https://www.getdbt.com/ Kubernetes - https://kubernetes.io/ KEDA - https://keda.sh/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
…
continue reading
39 episoder
Alle episoder
×Velkommen til Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.