Artwork

Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Airflow Strategies for Business Efficiency at Campbell with Larry Komenda

26:10
 
Del
 

Manage episode 430753692 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Managing data workflows well can change the game for any company. In this episode, we talk about how Airflow makes this possible. Larry Komenda, Chief Technology Officer at Campbell, shares how Airflow supports their operations and improves efficiency. Larry discusses his role at Campbell, their switch to Airflow, and its impact. We look at their strategies for testing and maintaining reliable workflows and how these help their business. Key Takeaways: (02:26) Strong technology and data systems are crucial for Campbell’s investment process. (05:03) Airflow manages data pipelines efficiently in the market data team. (07:39) Airflow supports various departments, including trading and operations. (09:22) Machine learning models run on dedicated Airflow instances. (11:12) Reliable workflows are ensured through thorough testing and development. (13:45) Business tasks are organized separately from Airflow for easier testing. (15:30) Non-technical teams have access to Airflow for better efficiency. (17:20) Thorough testing before deploying to Airflow is essential. (19:10) Non-technical users can interact with Airflow DAGs to solve their issues. (21:55) Airflow improves efficiency and reliability in trading and operations. (24:40) Enhancing the Airflow UI for non-technical users is important for accessibility. Resources Mentioned: Larry Komenda - https://www.linkedin.com/in/larrykomenda/ Campbell - https://www.linkedin.com/company/campbell-and-company/ 30% off Airflow Summit Ticket - https://ti.to/airflowsummit/2024/discount/30DISC_ASTRONOMER Apache Airflow - https://airflow.apache.org/ NumPy - https://numpy.org/ Python - https://www.python.org/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

39 episoder

Artwork
iconDel
 
Manage episode 430753692 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Managing data workflows well can change the game for any company. In this episode, we talk about how Airflow makes this possible. Larry Komenda, Chief Technology Officer at Campbell, shares how Airflow supports their operations and improves efficiency. Larry discusses his role at Campbell, their switch to Airflow, and its impact. We look at their strategies for testing and maintaining reliable workflows and how these help their business. Key Takeaways: (02:26) Strong technology and data systems are crucial for Campbell’s investment process. (05:03) Airflow manages data pipelines efficiently in the market data team. (07:39) Airflow supports various departments, including trading and operations. (09:22) Machine learning models run on dedicated Airflow instances. (11:12) Reliable workflows are ensured through thorough testing and development. (13:45) Business tasks are organized separately from Airflow for easier testing. (15:30) Non-technical teams have access to Airflow for better efficiency. (17:20) Thorough testing before deploying to Airflow is essential. (19:10) Non-technical users can interact with Airflow DAGs to solve their issues. (21:55) Airflow improves efficiency and reliability in trading and operations. (24:40) Enhancing the Airflow UI for non-technical users is important for accessibility. Resources Mentioned: Larry Komenda - https://www.linkedin.com/in/larrykomenda/ Campbell - https://www.linkedin.com/company/campbell-and-company/ 30% off Airflow Summit Ticket - https://ti.to/airflowsummit/2024/discount/30DISC_ASTRONOMER Apache Airflow - https://airflow.apache.org/ NumPy - https://numpy.org/ Python - https://www.python.org/ Thanks for listening to The Data Flowcast: Mastering Airflow for Data Engineering & AI. If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations. #AI #Automation #Airflow #MachineLearning
  continue reading

39 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil