Artwork

Indhold leveret af Ludwig-Maximilians-Universität München and MCMP Team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Ludwig-Maximilians-Universität München and MCMP Team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

A useful method for obtaining alternative formulations of the analytical hierarchy

1:14:05
 
Del
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117467 series 2929680
Indhold leveret af Ludwig-Maximilians-Universität München and MCMP Team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Ludwig-Maximilians-Universität München and MCMP Team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (6 November, 2014) titled "A useful method for obtaining alternative formulations of the analytical hierarchy". Abstract: In mathematical philosophy one often employs various formal systems and structures for solving philosophical tasks. In particular, many important results in Kripke's theory of truth and the like rest on definability techniques from second-order arithmetic. With this in mind, I will present one useful method for obtaining alternative formulations of the analytical hierarchy. The latter plays a key role in foundations of mathematics and theory of computation, being the generally accepted classification of undecidable problems which capture the truth predicate for first-order arithmetic of natural numbers, and whose computational complexities are less than that of second-order true arithmetic. In the course of the presentation I will mention some relevant contributions of J. Robinson, H. Putnam, J.Y. Halpern, I. Korec and others. Further applications, including those dealing with probabilistic logics, will be discussed in the final part of the talk.
  continue reading

22 episoder

Artwork
iconDel
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2+ y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117467 series 2929680
Indhold leveret af Ludwig-Maximilians-Universität München and MCMP Team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Ludwig-Maximilians-Universität München and MCMP Team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Stanislav O. Speranski (Sobolev Institute of Mathematics) gives a talk at the MCMP Colloquium (6 November, 2014) titled "A useful method for obtaining alternative formulations of the analytical hierarchy". Abstract: In mathematical philosophy one often employs various formal systems and structures for solving philosophical tasks. In particular, many important results in Kripke's theory of truth and the like rest on definability techniques from second-order arithmetic. With this in mind, I will present one useful method for obtaining alternative formulations of the analytical hierarchy. The latter plays a key role in foundations of mathematics and theory of computation, being the generally accepted classification of undecidable problems which capture the truth predicate for first-order arithmetic of natural numbers, and whose computational complexities are less than that of second-order true arithmetic. In the course of the presentation I will mention some relevant contributions of J. Robinson, H. Putnam, J.Y. Halpern, I. Korec and others. Further applications, including those dealing with probabilistic logics, will be discussed in the final part of the talk.
  continue reading

22 episoder

ทุกตอน

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil