Artwork

Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

MTBR: The Two-Step Memory That Transformed Cooperation in AI

4:43
 
Del
 

Manage episode 523435754 series 3690682
Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

We explore how memory-two bilateral reciprocity (MTBR) emerged from multi-agent Q-learning, revealing a dominant social strategy that combines forgiveness with a cycle-breaker. Learn about the dual objective—maximize your relative advantage to deter exploitation while also maximizing your own total payoff to encourage cooperation—and how these rules drive robust cooperation across Prisoner’s Dilemma, Stag Hunt, and evolving networks. Discover why MTBR can lift the average payoff of entire populations and what this means for real-world collaboration and the design of cooperative AI.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1602 episoder

Artwork
iconDel
 
Manage episode 523435754 series 3690682
Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

We explore how memory-two bilateral reciprocity (MTBR) emerged from multi-agent Q-learning, revealing a dominant social strategy that combines forgiveness with a cycle-breaker. Learn about the dual objective—maximize your relative advantage to deter exploitation while also maximizing your own total payoff to encourage cooperation—and how these rules drive robust cooperation across Prisoner’s Dilemma, Stag Hunt, and evolving networks. Discover why MTBR can lift the average payoff of entire populations and what this means for real-world collaboration and the design of cooperative AI.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1602 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil