Artwork

Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Untangling Knots: The Unknotting Number and a 2025 Breakthrough

5:38
 
Del
 

Manage episode 523546710 series 3690682
Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

A friendly dive into knot theory and the unknotting number—the minimum number of crossing switches needed to untie a knot. We ride from simple knots like the trefoil and the figure-eight to complex families like twist and torus knots, explain why the unknotting number gives a deep glimpse into a knot's structure, and celebrate the 2025 result showing that unknotting numbers are not always additive when you connect a knot with its mirror. Plus a peek at other invariants that round out the knot-theory toolkit.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1574 episoder

Artwork
iconDel
 
Manage episode 523546710 series 3690682
Indhold leveret af Mike Breault. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Mike Breault eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

A friendly dive into knot theory and the unknotting number—the minimum number of crossing switches needed to untie a knot. We ride from simple knots like the trefoil and the figure-eight to complex families like twist and torus knots, explain why the unknotting number gives a deep glimpse into a knot's structure, and celebrate the 2025 result showing that unknotting numbers are not always additive when you connect a knot with its mirror. Plus a peek at other invariants that round out the knot-theory toolkit.

Note: This podcast was AI-generated, and sometimes AI can make mistakes. Please double-check any critical information.

Sponsored by Embersilk LLC

  continue reading

1574 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil