Artificial Intelligence has suddenly gone from the fringes of science to being everywhere. So how did we get here? And where's this all heading? In this new series of Science Friction, we're finding out.
…
continue reading
Indhold leveret af Seismic Soundoff and Society of Exploration Geophysicists (SEG). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Seismic Soundoff and Society of Exploration Geophysicists (SEG) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !
Gå offline med appen Player FM !
210: Unveiling Seismic Secrets - Inside Machine Learning's Black Box
MP3•Episode hjem
Manage episode 397550018 series 1231780
Indhold leveret af Seismic Soundoff and Society of Exploration Geophysicists (SEG). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Seismic Soundoff and Society of Exploration Geophysicists (SEG) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
"It's not like machine learning will solve all the problems. It's not a magical tool." David Lubo-Robles highlights his award-winning paper that utilized novel machine learning methods to enhance interpretability in seismic volume data from the Gulf of Mexico. Discover the power of two open-source tools - SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) - in enhancing the interpretability of machine models. David takes us through his team's research that garnered an Honorable Mention for Best Paper in Interpretation. He also shares his journey into geophysics, driven by a fascination with the Earth and energy discovery. Listeners will gain insight into the critical role of input quality in machine learning outcomes, the importance of balancing datasets, and the necessity of geoscientific validation. The episode also addresses common misconceptions about machine learning in geophysics, emphasizing the need for critical thinking and geological knowledge to apply these advanced techniques. 📋 EPISODE HIGHLIGHTS * 2:04 - How David discovered geophysics * 4:32 - How SHAP and LIME improve machine learning for geophysics * 6:00 - What to do when algorithms misclassify areas of interest * 10:47 - A misconception common for machine learning in geophysics * 13:37 - Sensory interpretation can be very subjective, even in the same area * 15:00 - Managing uncertainty in the subsurface ✍️ EPISODE LINKS Visit https://seg.org/podcasts/episode-210-unveiling-seismic-secrets-inside-machine-learnings-black-box/ for the complete interview transcript and all the links referenced in the show. 💬GUEST BIO Dr. David Lubo-Robles is a Postdoctoral Research Associate at the University of Oklahoma. David is a geophysicist interested in developing and applying innovative tools using machine learning, quantitative seismic interpretation, and seismic attribute analysis for oil and gas, geothermal reservoir characterization, hydrogen storage, and carbon capture, utilization, and storage (CCUS). His paper, "Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An explainable machine-learning study," was awarded Honorable Mention, Best Paper in Interpretation in 2022. David received his MS and Ph.D. in Geophysics at the University of Oklahoma. SHOW CREDITS Seismic Soundoff showcases conversations with geoscientists addressing the challenges of energy, water, and climate. SEG creates these episodes to celebrate and inspire the geophysicists of today and tomorrow. If you have episode ideas or feedback for the show or want to sponsor a future episode, email the show at podcast@seg.org. This episode was hosted, edited, and produced by Andrew Geary at TreasureMint. The SEG podcast team is composed of Jennifer Cobb, Kathy Gamble, and Ally McGinnis.
…
continue reading
245 episoder
MP3•Episode hjem
Manage episode 397550018 series 1231780
Indhold leveret af Seismic Soundoff and Society of Exploration Geophysicists (SEG). Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Seismic Soundoff and Society of Exploration Geophysicists (SEG) eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
"It's not like machine learning will solve all the problems. It's not a magical tool." David Lubo-Robles highlights his award-winning paper that utilized novel machine learning methods to enhance interpretability in seismic volume data from the Gulf of Mexico. Discover the power of two open-source tools - SHAP (Shapley Additive Explanations) and LIME (Local Interpretable Model-agnostic Explanations) - in enhancing the interpretability of machine models. David takes us through his team's research that garnered an Honorable Mention for Best Paper in Interpretation. He also shares his journey into geophysics, driven by a fascination with the Earth and energy discovery. Listeners will gain insight into the critical role of input quality in machine learning outcomes, the importance of balancing datasets, and the necessity of geoscientific validation. The episode also addresses common misconceptions about machine learning in geophysics, emphasizing the need for critical thinking and geological knowledge to apply these advanced techniques. 📋 EPISODE HIGHLIGHTS * 2:04 - How David discovered geophysics * 4:32 - How SHAP and LIME improve machine learning for geophysics * 6:00 - What to do when algorithms misclassify areas of interest * 10:47 - A misconception common for machine learning in geophysics * 13:37 - Sensory interpretation can be very subjective, even in the same area * 15:00 - Managing uncertainty in the subsurface ✍️ EPISODE LINKS Visit https://seg.org/podcasts/episode-210-unveiling-seismic-secrets-inside-machine-learnings-black-box/ for the complete interview transcript and all the links referenced in the show. 💬GUEST BIO Dr. David Lubo-Robles is a Postdoctoral Research Associate at the University of Oklahoma. David is a geophysicist interested in developing and applying innovative tools using machine learning, quantitative seismic interpretation, and seismic attribute analysis for oil and gas, geothermal reservoir characterization, hydrogen storage, and carbon capture, utilization, and storage (CCUS). His paper, "Quantifying the sensitivity of seismic facies classification to seismic attribute selection: An explainable machine-learning study," was awarded Honorable Mention, Best Paper in Interpretation in 2022. David received his MS and Ph.D. in Geophysics at the University of Oklahoma. SHOW CREDITS Seismic Soundoff showcases conversations with geoscientists addressing the challenges of energy, water, and climate. SEG creates these episodes to celebrate and inspire the geophysicists of today and tomorrow. If you have episode ideas or feedback for the show or want to sponsor a future episode, email the show at podcast@seg.org. This episode was hosted, edited, and produced by Andrew Geary at TreasureMint. The SEG podcast team is composed of Jennifer Cobb, Kathy Gamble, and Ally McGinnis.
…
continue reading
245 episoder
Semua episod
×Velkommen til Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.