Artwork

Indhold leveret af The Thesis Review and Sean Welleck. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Thesis Review and Sean Welleck eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

[09] Kenneth Stanley - Efficient Evolution of Neural Networks through Complexification

1:21:26
 
Del
 

Manage episode 302418436 series 2982803
Indhold leveret af The Thesis Review and Sean Welleck. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Thesis Review and Sean Welleck eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Kenneth Stanley is a researcher at OpenAI, where he leads the team on Open-endedness. Previously he was a Professor Computer Science at the University of Central Florida, cofounder of Geometric Intelligence, and head of Core AI research at Uber AI labs. His PhD thesis is titled "Efficient Evolution of Neural Networks through Complexification", which he completed on 2004 at the University of Texas. We talk about evolving increasingly complex structures and how this led to the NEAT algorithm that he developed during his PhD. We discuss his research directions related to open-endedness, how the field has changed over time, and how he currently views algorithms that were developed over a decade ago. Episode notes: https://cs.nyu.edu/~welleck/episode9.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
  continue reading

49 episoder

Artwork
iconDel
 
Manage episode 302418436 series 2982803
Indhold leveret af The Thesis Review and Sean Welleck. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Thesis Review and Sean Welleck eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Kenneth Stanley is a researcher at OpenAI, where he leads the team on Open-endedness. Previously he was a Professor Computer Science at the University of Central Florida, cofounder of Geometric Intelligence, and head of Core AI research at Uber AI labs. His PhD thesis is titled "Efficient Evolution of Neural Networks through Complexification", which he completed on 2004 at the University of Texas. We talk about evolving increasingly complex structures and how this led to the NEAT algorithm that he developed during his PhD. We discuss his research directions related to open-endedness, how the field has changed over time, and how he currently views algorithms that were developed over a decade ago. Episode notes: https://cs.nyu.edu/~welleck/episode9.html Follow the Thesis Review (@thesisreview) and Sean Welleck (@wellecks) on Twitter, and find out more info about the show at https://cs.nyu.edu/~welleck/podcast.html Support The Thesis Review at www.buymeacoffee.com/thesisreview
  continue reading

49 episoder

כל הפרקים

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil