Artwork

Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Inside the Custom Framework for Managing Airflow Code at Wix with Gil Reich

31:02
 
Del
 

Manage episode 485580771 series 2948506
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Efficient orchestration and maintainability are crucial for data engineering at scale. Gil Reich, Data Developer for Data Science at Wix, shares how his team reduced code duplication, standardized pipelines, and improved Airflow task orchestration using a Python-based framework built within the data science team.

In this episode, Gil explains how this internal framework simplifies DAG creation, improves documentation accuracy, and enables consistent task generation for machine learning pipelines. He also shares lessons from complex DAG optimization and maintaining testable code.

Key Takeaways:

(03:23) Code duplication creates long-term problems.

(08:16) Frameworks bring order to complex pipelines.

(09:41) Shared functions cut down repetitive code.

(17:18) Auto-generated docs stay accurate by design.

(22:40) On-demand DAGs support real-time workflows.

(25:08) Task-level sensors improve run efficiency.

(27:40) Combine local runs with automated tests.

(30:09) Clean code helps teams scale faster.

Resources Mentioned:

Gil Reich

https://www.linkedin.com/in/gilreich/

Wix | LinkedIn

https://www.linkedin.com/company/wix-com/

Wix | Website

https://www.wix.com/

DS DAG Framework

https://airflowsummit.org/slides/2024/92-refactoring-dags.pdf

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Artwork
iconDel
 
Manage episode 485580771 series 2948506
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Efficient orchestration and maintainability are crucial for data engineering at scale. Gil Reich, Data Developer for Data Science at Wix, shares how his team reduced code duplication, standardized pipelines, and improved Airflow task orchestration using a Python-based framework built within the data science team.

In this episode, Gil explains how this internal framework simplifies DAG creation, improves documentation accuracy, and enables consistent task generation for machine learning pipelines. He also shares lessons from complex DAG optimization and maintaining testable code.

Key Takeaways:

(03:23) Code duplication creates long-term problems.

(08:16) Frameworks bring order to complex pipelines.

(09:41) Shared functions cut down repetitive code.

(17:18) Auto-generated docs stay accurate by design.

(22:40) On-demand DAGs support real-time workflows.

(25:08) Task-level sensors improve run efficiency.

(27:40) Combine local runs with automated tests.

(30:09) Clean code helps teams scale faster.

Resources Mentioned:

Gil Reich

https://www.linkedin.com/in/gilreich/

Wix | LinkedIn

https://www.linkedin.com/company/wix-com/

Wix | Website

https://www.wix.com/

DS DAG Framework

https://airflowsummit.org/slides/2024/92-refactoring-dags.pdf

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Minden epizód

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil