Artwork

Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Orchestrating Analytics and AI Workflows at Telia with Arjun Anandkumar

26:00
 
Del
 

Manage episode 464044556 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

50 episoder

Artwork
iconDel
 
Manage episode 464044556 series 2053958
Indhold leveret af The Data Flowcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af The Data Flowcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

The future of data engineering lies in seamless orchestration and automation. In this episode, Arjun Anandkumar, Data Engineer at Telia, shares how his team uses Airflow to drive analytics and AI workflows. He highlights the challenges of scaling data platforms and how adopting best practices can simplify complex processes for teams across the organization. Arjun also discusses the transformative role of tools like Cosmos and Terraform in enhancing efficiency and collaboration.

Key Takeaways:

(02:16) Telia operates across the Nordics and Baltics, focusing on telecom and energy services.

(03:45) Airflow runs dbt models seamlessly with Cosmos on AWS MWAA.

(05:47) Cosmos improves visibility and orchestration in Airflow.

(07:00) Medallion Architecture organizes data into bronze, silver and gold layers.

(08:34) Task group challenges highlight the need for adaptable workflows.

(15:04) Scaling managed services requires trial, error and tailored tweaks.

(19:46) Terraform scales infrastructure, while YAML templates manage DAGs efficiently.

(20:00) Templated DAGs and robust testing enhance platform management.

(24:15) Open-source resources drive innovation in Airflow practices.

Resources Mentioned:

Arjun Anandkumar -

https://www.linkedin.com/in/arjunanand1/?originalSubdomain=dk

Telia -

https://www.linkedin.com/company/teliacompany/

Apache Airflow -

https://airflow.apache.org/

Cosmos by Astronomer -

https://www.astronomer.io/cosmos/

Terraform -

https://www.terraform.io/

Medallion Architecture by Databricks -

https://www.databricks.com/glossary/medallion-architecture

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

50 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil