Artwork

Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

The Mass Gap of the Space-time and its Shape

3:24
 
Del
 

Manage episode 431860200 series 3474385
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-mass-gap-of-the-space-time-and-its-shape.
Explore Snyder's quantum space-time with focus on how its quanta has a positive mass, cell geometry and links to standard particle models.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #quantum-spacetime, #spacetime-mas-gap, #snyder's-algebra, #snyder's-quantum-space-time, #lorentz-invariant-space-time, #standard-model-particles, #quantum-gravity, #hackernoon-top-story, and more.
This story was written by: @phenomenology. Learn more about this writer by checking @phenomenology's about page, and for more stories, please visit hackernoon.com.
Check out our latest exploration into Snyder’s quantum space-time! We dive into how quanta of space-time have a positive mass, explore the intriguing 24-cell geometry, and discuss its potential links to the standard model of particles. Plus, we connect these findings to major concepts like mass generation and the flatness of the observable universe. TL;DR We’re investigating Snyder’s quantum space-time, focusing on its Lorentz invariance and the intriguing positive mass gap. The study highlights the 24-cell geometry, its symmetry group, and potential connections to the standard model of particles. This research touches on mass generation, Avogadro's number, and the observable universe's flatness.

  continue reading

301 episoder

Artwork
iconDel
 
Manage episode 431860200 series 3474385
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/the-mass-gap-of-the-space-time-and-its-shape.
Explore Snyder's quantum space-time with focus on how its quanta has a positive mass, cell geometry and links to standard particle models.
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #quantum-spacetime, #spacetime-mas-gap, #snyder's-algebra, #snyder's-quantum-space-time, #lorentz-invariant-space-time, #standard-model-particles, #quantum-gravity, #hackernoon-top-story, and more.
This story was written by: @phenomenology. Learn more about this writer by checking @phenomenology's about page, and for more stories, please visit hackernoon.com.
Check out our latest exploration into Snyder’s quantum space-time! We dive into how quanta of space-time have a positive mass, explore the intriguing 24-cell geometry, and discuss its potential links to the standard model of particles. Plus, we connect these findings to major concepts like mass generation and the flatness of the observable universe. TL;DR We’re investigating Snyder’s quantum space-time, focusing on its Lorentz invariance and the intriguing positive mass gap. The study highlights the 24-cell geometry, its symmetry group, and potential connections to the standard model of particles. This research touches on mass generation, Avogadro's number, and the observable universe's flatness.

  continue reading

301 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil