Artwork

Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Fine-Tuning LLaMA for Multi-Stage Text Retrieval

6:32
 
Del
 

Manage episode 427553455 series 3474385
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/fine-tuning-llama-for-multi-stage-text-retrieval.
Discover how fine-tuning LLaMA models enhances text retrieval efficiency and accuracy
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #llama, #llm-fine-tuning, #fine-tuning-llama, #multi-stage-text-retrieval, #rankllama, #bi-encoder-architecture, #transformer-architecture, #hackernoon-top-story, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
This study explores enhancing text retrieval using state-of-the-art LLaMA models. Fine-tuned as RepLLaMA and RankLLaMA, these models achieve superior effectiveness for both passage and document retrieval, leveraging their ability to handle longer contexts and exhibiting strong zero-shot performance.

  continue reading

400 episoder

Artwork
iconDel
 
Manage episode 427553455 series 3474385
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/fine-tuning-llama-for-multi-stage-text-retrieval.
Discover how fine-tuning LLaMA models enhances text retrieval efficiency and accuracy
Check more stories related to tech-stories at: https://hackernoon.com/c/tech-stories. You can also check exclusive content about #llama, #llm-fine-tuning, #fine-tuning-llama, #multi-stage-text-retrieval, #rankllama, #bi-encoder-architecture, #transformer-architecture, #hackernoon-top-story, and more.
This story was written by: @textmodels. Learn more about this writer by checking @textmodels's about page, and for more stories, please visit hackernoon.com.
This study explores enhancing text retrieval using state-of-the-art LLaMA models. Fine-tuned as RepLLaMA and RankLLaMA, these models achieve superior effectiveness for both passage and document retrieval, leveraging their ability to handle longer contexts and exhibiting strong zero-shot performance.

  continue reading

400 episoder

Semua episod

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil