Artwork

Indhold leveret af Colabra. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Colabra eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Therapeutics Controlling Protein Turnover - Dr. Juliet Williams

38:18
 
Del
 

Manage episode 380442617 series 3312469
Indhold leveret af Colabra. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Colabra eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

While DNA captures most of the fanfare, proteins are the catalytic and structural superstars of the cell. However, they can also become problematic. Cells have intricate mechanisms to remove damaged or mis-expressed proteins that could be deleterious to cellular function. This process is mediated by a process called ubiquitination, mediated by a special class of proteins called E3 ligases. Ubiquitin is the tag that's added that signals that a protein should be moved to the biochemical garbage can. Dr. Juliet WIlliams of Kymera describes how their company has used modeling and A.I. to design molecular linkers that connect a protein that needs to be degraded with the machinery to tag it for destruction. The goal of this line of therapeutics is to target a suite of proteins that need to be degraded for normal health and development. Their pipeline contains multiple clinical and pre-clinical trials, and the approach is an exciting complement to other drug discovery methods.

  continue reading

433 episoder

Artwork
iconDel
 
Manage episode 380442617 series 3312469
Indhold leveret af Colabra. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Colabra eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

While DNA captures most of the fanfare, proteins are the catalytic and structural superstars of the cell. However, they can also become problematic. Cells have intricate mechanisms to remove damaged or mis-expressed proteins that could be deleterious to cellular function. This process is mediated by a process called ubiquitination, mediated by a special class of proteins called E3 ligases. Ubiquitin is the tag that's added that signals that a protein should be moved to the biochemical garbage can. Dr. Juliet WIlliams of Kymera describes how their company has used modeling and A.I. to design molecular linkers that connect a protein that needs to be degraded with the machinery to tag it for destruction. The goal of this line of therapeutics is to target a suite of proteins that need to be degraded for normal health and development. Their pipeline contains multiple clinical and pre-clinical trials, and the approach is an exciting complement to other drug discovery methods.

  continue reading

433 episoder

All episodes

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning