Artwork

Indhold leveret af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

How Can Data Science Solve Cybersecurity Challenges?

1:00:01
 
Del
 

Manage episode 359344658 series 1264075
Indhold leveret af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 episoder

Artwork
iconDel
 
Manage episode 359344658 series 1264075
Indhold leveret af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

174 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil