Artwork

Indhold leveret af Hopewell Valley Student Publications Network. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Hopewell Valley Student Publications Network eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Regulation of Cell Cycle

3:03
 
Del
 

Manage episode 293594074 series 2859788
Indhold leveret af Hopewell Valley Student Publications Network. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Hopewell Valley Student Publications Network eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

My AP Biology Thoughts

Unit 4 Cell Communication and Cell Cycle

Welcome to My AP Biology Thoughts podcast, my name is Alex Jing and I am your host for episode #96 called Unit 4 Cell Communication and Cell Cycle: Regulation of Cell Cycle. Today we will be discussing How cells regulate their division

Segment 1: Introduction to Cell Cycle Regulation

  • The cell cycle includes 4 main stages: G1, S, G2, and mitosis. These phases are responsible for the division of cells. However, how do the cells determine when they can proceed to the next stage of the cell cycle?
  • Cells regulate their advancement in the cell cycle through the use of Cyclin-dependent kinases, or CDKs, and CDK inhibitors. When CDKs are active, they phosphorylate other enzymes in the cell responsible for activating the next stage of the cell cycle. CDK inhibitors are receptors that when activated, will inhibit the CDKs, preventing the cell from going to the next stage.

Segment 2: More About the Regulation of the Cell Cycle

  • A prominent example of why CDKs and their inhibitors are so important is the development of cancer. Cancers form when cells are growing at an rapid, unrestricted rate, and are usually caused by some mutations in the cell which results in either overactive CDKs or inactive CDK inhibitors. P53 is a CDK inhibitor which is responsible for ensuring that DNA is not damaged during the replication process. If it detects damaged DNA it will send out signals to inhibit the CDKs. If a mutation caused the P53 to not be responsive, than cells could be able to divide with damaged DNA, leading to a new cancer to form.

Segment 3: Connection to the Course

  • Regulation of the cell cycle is an essential part of all living organisms. Being able to conduct mitosis is what allows organisms to grow and replace damaged cells, and being able to regulate this process is extremely important to ensuring that division is done correctly.

Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit www.hvspn.com.

Music Credits:

  • "Ice Flow" Kevin MacLeod (incompetech.com)
  • Licensed under Creative Commons: By Attribution 4.0 License
  • http://creativecommons.org/licenses/by/4.0/

Subscribe to our Podcast

Apple Podcasts

Spotify

Google Podcasts

YouTube

Connect with us on Social Media

Twitter @thehvspn

  continue reading

130 episoder

Artwork
iconDel
 
Manage episode 293594074 series 2859788
Indhold leveret af Hopewell Valley Student Publications Network. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Hopewell Valley Student Publications Network eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

My AP Biology Thoughts

Unit 4 Cell Communication and Cell Cycle

Welcome to My AP Biology Thoughts podcast, my name is Alex Jing and I am your host for episode #96 called Unit 4 Cell Communication and Cell Cycle: Regulation of Cell Cycle. Today we will be discussing How cells regulate their division

Segment 1: Introduction to Cell Cycle Regulation

  • The cell cycle includes 4 main stages: G1, S, G2, and mitosis. These phases are responsible for the division of cells. However, how do the cells determine when they can proceed to the next stage of the cell cycle?
  • Cells regulate their advancement in the cell cycle through the use of Cyclin-dependent kinases, or CDKs, and CDK inhibitors. When CDKs are active, they phosphorylate other enzymes in the cell responsible for activating the next stage of the cell cycle. CDK inhibitors are receptors that when activated, will inhibit the CDKs, preventing the cell from going to the next stage.

Segment 2: More About the Regulation of the Cell Cycle

  • A prominent example of why CDKs and their inhibitors are so important is the development of cancer. Cancers form when cells are growing at an rapid, unrestricted rate, and are usually caused by some mutations in the cell which results in either overactive CDKs or inactive CDK inhibitors. P53 is a CDK inhibitor which is responsible for ensuring that DNA is not damaged during the replication process. If it detects damaged DNA it will send out signals to inhibit the CDKs. If a mutation caused the P53 to not be responsive, than cells could be able to divide with damaged DNA, leading to a new cancer to form.

Segment 3: Connection to the Course

  • Regulation of the cell cycle is an essential part of all living organisms. Being able to conduct mitosis is what allows organisms to grow and replace damaged cells, and being able to regulate this process is extremely important to ensuring that division is done correctly.

Thank you for listening to this episode of My AP Biology Thoughts. For more student-ran podcasts and digital content, make sure that you visit www.hvspn.com.

Music Credits:

  • "Ice Flow" Kevin MacLeod (incompetech.com)
  • Licensed under Creative Commons: By Attribution 4.0 License
  • http://creativecommons.org/licenses/by/4.0/

Subscribe to our Podcast

Apple Podcasts

Spotify

Google Podcasts

YouTube

Connect with us on Social Media

Twitter @thehvspn

  continue reading

130 episoder

Todos os episódios

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning