Artwork

Indhold leveret af Adam Bien. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Adam Bien eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Revolutionizing AI with Java: From LLMs to Vector APIs

1:09:19
 
Del
 

Manage episode 442468471 series 2469611
Indhold leveret af Adam Bien. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Adam Bien eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
An airhacks.fm conversation with Alfonso Peterssen (@TheMukel) about:
Alfonso previously appeared on "#294 LLama2.java: LLM integration with A 100% Pure Java file", discussion of llama2.java and llama3.java projects for running LLMs in Java, performance comparison between Java and C implementations, use of Vector API in Java for matrix multiplication, challenges and potential improvements in Vector API implementation, integration of various LLM models like Mistral, phi, qwen or gemma, differences in model sizes and capabilities, tokenization and chat format challenges across different models, potential for Java Community Process (JCP) standardization of gguf parsing, quantization techniques and their impact on performance, plans for integrating with langchain4j, advantages of pure Java implementations for AI models, potential for GraalVM and native image optimizations, discussion on the future of specialized AI models for specific tasks, challenges in training models with language capabilities but limited world knowledge, importance of SIMD instructions and vector operations for performance optimization, potential improvements in Java's handling of different float formats like float16 and bfloat16, discussion on the role of smaller, specialized AI models in enterprise applications and development tools

Alfonso Peterssen on twitter: @TheMukel

  continue reading

342 episoder

Artwork
iconDel
 
Manage episode 442468471 series 2469611
Indhold leveret af Adam Bien. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Adam Bien eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
An airhacks.fm conversation with Alfonso Peterssen (@TheMukel) about:
Alfonso previously appeared on "#294 LLama2.java: LLM integration with A 100% Pure Java file", discussion of llama2.java and llama3.java projects for running LLMs in Java, performance comparison between Java and C implementations, use of Vector API in Java for matrix multiplication, challenges and potential improvements in Vector API implementation, integration of various LLM models like Mistral, phi, qwen or gemma, differences in model sizes and capabilities, tokenization and chat format challenges across different models, potential for Java Community Process (JCP) standardization of gguf parsing, quantization techniques and their impact on performance, plans for integrating with langchain4j, advantages of pure Java implementations for AI models, potential for GraalVM and native image optimizations, discussion on the future of specialized AI models for specific tasks, challenges in training models with language capabilities but limited world knowledge, importance of SIMD instructions and vector operations for performance optimization, potential improvements in Java's handling of different float formats like float16 and bfloat16, discussion on the role of smaller, specialized AI models in enterprise applications and development tools

Alfonso Peterssen on twitter: @TheMukel

  continue reading

342 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil