Artwork

Indhold leveret af Jesse Noar. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Jesse Noar eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

462: Super Ciliate Symbiont Set

8:51
 
Del
 

Manage episode 302176098 series 1567470
Indhold leveret af Jesse Noar. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Jesse Noar eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This episode: A eukaryote has symbionts living in it: green algae and also purple bacteria, a combo never seen before!

Download Episode (6.1 MB, 8.8 minutes) Show notes: Microbe of the episode: Staphylococcus virus phiETA

News item Takeaways Having bacteria as endosymbionts is fairly common in life on Earth: almost all eukaryotes have them in the form of mitochondria and sometimes chloroplasts. These former bacteria somehow got inside the ancestral eukaryote, either as parasites or as prey, and ended up as integral parts of their host's metabolic functions. Some organisms, especially insects, obtained bacterial endosymbionts more recently, that help them balance their metabolic needs when living on limited diets. Algae have been known to be endosymbionts also, performing photosynthesis for their host. But in this study, a ciliate with both algae and purple photosynthetic bacteria as endosymbionts was discovered. Purple bacteria as symbionts is rare, and this combination has not been observed before. Interestingly, though algae produce oxygen through their photosynthesis, the ciliate prefers living in low-oxygen sediment at the bottom of a pond. The symbionts and their host seem to adjust their metabolisms as needed depending on the needs at the time; they may each perform photosynthesis, fermentation, or respiration if light, organic carbon, or oxygen are available. Journal Paper: Muñoz-Gómez SA, Kreutz M, Hess S. 2021. A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. Sci Adv 7:eabg4102.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episoder

Artwork

462: Super Ciliate Symbiont Set

BacterioFiles

191 subscribers

published

iconDel
 
Manage episode 302176098 series 1567470
Indhold leveret af Jesse Noar. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Jesse Noar eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This episode: A eukaryote has symbionts living in it: green algae and also purple bacteria, a combo never seen before!

Download Episode (6.1 MB, 8.8 minutes) Show notes: Microbe of the episode: Staphylococcus virus phiETA

News item Takeaways Having bacteria as endosymbionts is fairly common in life on Earth: almost all eukaryotes have them in the form of mitochondria and sometimes chloroplasts. These former bacteria somehow got inside the ancestral eukaryote, either as parasites or as prey, and ended up as integral parts of their host's metabolic functions. Some organisms, especially insects, obtained bacterial endosymbionts more recently, that help them balance their metabolic needs when living on limited diets. Algae have been known to be endosymbionts also, performing photosynthesis for their host. But in this study, a ciliate with both algae and purple photosynthetic bacteria as endosymbionts was discovered. Purple bacteria as symbionts is rare, and this combination has not been observed before. Interestingly, though algae produce oxygen through their photosynthesis, the ciliate prefers living in low-oxygen sediment at the bottom of a pond. The symbionts and their host seem to adjust their metabolisms as needed depending on the needs at the time; they may each perform photosynthesis, fermentation, or respiration if light, organic carbon, or oxygen are available. Journal Paper: Muñoz-Gómez SA, Kreutz M, Hess S. 2021. A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. Sci Adv 7:eabg4102.

Other interesting stories:

Email questions or comments to bacteriofiles at gmail dot com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

  continue reading

152 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning