Artwork

Indhold leveret af Fiddler AI. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Fiddler AI eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Tracking Drift to Monitor LLM Performance

11:50
 
Del
 

Manage episode 455149512 series 3623668
Indhold leveret af Fiddler AI. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Fiddler AI eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode, we discuss how to monitor the performance of Large Language Models (LLMs) in production environments. We explore common enterprise approaches to LLM deployment and evaluate the importance of monitoring for LLM quality or the quality of LLM responses over time. We discuss strategies for "drift monitoring" — tracking changes in both input prompts and output responses — allowing for proactive troubleshooting and improvement via techniques like fine-tuning or augmenting data sources.

Read the article by Fiddler AI and explore additional resources on how AI observability can help developers build trust into AI services.

  continue reading

En episode

Artwork
iconDel
 
Manage episode 455149512 series 3623668
Indhold leveret af Fiddler AI. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Fiddler AI eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode, we discuss how to monitor the performance of Large Language Models (LLMs) in production environments. We explore common enterprise approaches to LLM deployment and evaluate the importance of monitoring for LLM quality or the quality of LLM responses over time. We discuss strategies for "drift monitoring" — tracking changes in both input prompts and output responses — allowing for proactive troubleshooting and improvement via techniques like fine-tuning or augmenting data sources.

Read the article by Fiddler AI and explore additional resources on how AI observability can help developers build trust into AI services.

  continue reading

En episode

همه قسمت ها

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil