Artwork

Indhold leveret af Oncotarget Podcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Oncotarget Podcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

ATR Inhibition Using Gartisertib in Patient-derived Glioblastoma Cell Lines

3:32
 
Del
 

Manage episode 395939068 series 1754503
Indhold leveret af Oncotarget Podcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Oncotarget Podcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
BUFFALO, NY- January 17, 2024 – A new #research paper was #published in Oncotarget's Volume 15 on January 16, 2024, entitled, “ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines.” Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. In this new study, researchers Mathew Lozinski, Nikola A. Bowden, Moira C. Graves, Michael Fay, Bryan W. Day, Brett W. Stringer, and Paul A. Tooney from University of Newcastle, Hunter Medical Research Institute, GenesisCare, QIMR Berghofer Medical Research Institute, and Griffith University investigated the activity of the ATR inhibitor gartisertib alone, and in combination with TMZ and/or RT, in multiple patient-derived glioblastoma cell lines. “Using a panel of 12 patient-derived glioblastoma cell lines, we investigated the chemo- and radio-sensitizing effect of gartisertib, a potent and selective inhibitor of ATR [26] that was explored in a phase 1 clinical trial for patients with advanced solid tumors (NCT02278250).” The team showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. “Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.” DOI - https://doi.org/10.18632/oncotarget.28551 Correspondence to - Paul A. Tooney - paul.tooney@newcastle.edu.au Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28551 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, glioblastoma, DNA damage response, ataxia-telangiectasia and rad3-related protein, radiation therapy, temozolomide About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: SoundCloud - https://soundcloud.com/oncotarget Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Media Contact MEDIA@IMPACTJOURNALS.COM 18009220957
  continue reading

454 episoder

Artwork
iconDel
 
Manage episode 395939068 series 1754503
Indhold leveret af Oncotarget Podcast. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Oncotarget Podcast eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
BUFFALO, NY- January 17, 2024 – A new #research paper was #published in Oncotarget's Volume 15 on January 16, 2024, entitled, “ATR inhibition using gartisertib enhances cell death and synergises with temozolomide and radiation in patient-derived glioblastoma cell lines.” Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. In this new study, researchers Mathew Lozinski, Nikola A. Bowden, Moira C. Graves, Michael Fay, Bryan W. Day, Brett W. Stringer, and Paul A. Tooney from University of Newcastle, Hunter Medical Research Institute, GenesisCare, QIMR Berghofer Medical Research Institute, and Griffith University investigated the activity of the ATR inhibitor gartisertib alone, and in combination with TMZ and/or RT, in multiple patient-derived glioblastoma cell lines. “Using a panel of 12 patient-derived glioblastoma cell lines, we investigated the chemo- and radio-sensitizing effect of gartisertib, a potent and selective inhibitor of ATR [26] that was explored in a phase 1 clinical trial for patients with advanced solid tumors (NCT02278250).” The team showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. “Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.” DOI - https://doi.org/10.18632/oncotarget.28551 Correspondence to - Paul A. Tooney - paul.tooney@newcastle.edu.au Sign up for free Altmetric alerts about this article - https://oncotarget.altmetric.com/details/email_updates?id=10.18632%2Foncotarget.28551 Subscribe for free publication alerts from Oncotarget - https://www.oncotarget.com/subscribe/ Keywords - cancer, glioblastoma, DNA damage response, ataxia-telangiectasia and rad3-related protein, radiation therapy, temozolomide About Oncotarget Oncotarget (a primarily oncology-focused, peer-reviewed, open access journal) aims to maximize research impact through insightful peer-review; eliminate borders between specialties by linking different fields of oncology, cancer research and biomedical sciences; and foster application of basic and clinical science. To learn more about Oncotarget, please visit https://www.oncotarget.com and connect with us: SoundCloud - https://soundcloud.com/oncotarget Facebook - https://www.facebook.com/Oncotarget/ X - https://twitter.com/oncotarget Instagram - https://www.instagram.com/oncotargetjrnl/ YouTube - https://www.youtube.com/@OncotargetJournal LinkedIn - https://www.linkedin.com/company/oncotarget Pinterest - https://www.pinterest.com/oncotarget/ Reddit - https://www.reddit.com/user/Oncotarget/ Media Contact MEDIA@IMPACTJOURNALS.COM 18009220957
  continue reading

454 episoder

Alle afleveringen

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning