Flash Forward is a show about possible (and not so possible) future scenarios. What would the warranty on a sex robot look like? How would diplomacy work if we couldn’t lie? Could there ever be a fecal transplant black market? (Complicated, it wouldn’t, and yes, respectively, in case you’re curious.) Hosted and produced by award winning science journalist Rose Eveleth, each episode combines audio drama and journalism to go deep on potential tomorrows, and uncovers what those futures might re ...
…
continue reading
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !
Gå offline med appen Player FM !
137 - Nearest Neighbor Language Modeling and Machine Translation, with Urvashi Khandelwal
Manage episode 352483018 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
We invited Urvashi Khandelwal, a research scientist at Google Brain to talk about nearest neighbor language and machine translation models. These models interpolate parametric (conditional) language models with non-parametric distributions over the closest values in some data stores built from relevant data. Not only are these models shown to outperform the usual parametric language models, they also have important implications on memorization and generalization in language models. Urvashi's webpage: https://urvashik.github.io Papers discussed: 1) Generalization through memorization: Nearest Neighbor Language Models (https://www.semanticscholar.org/paper/7be8c119dbe065c52125ee7716601751f3116844) 2)Nearest Neighbor Machine Translation (https://www.semanticscholar.org/paper/20d51f8e449b59c7e140f7a7eec9ab4d4d6f80ea)
…
continue reading
145 episoder
Manage episode 352483018 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
We invited Urvashi Khandelwal, a research scientist at Google Brain to talk about nearest neighbor language and machine translation models. These models interpolate parametric (conditional) language models with non-parametric distributions over the closest values in some data stores built from relevant data. Not only are these models shown to outperform the usual parametric language models, they also have important implications on memorization and generalization in language models. Urvashi's webpage: https://urvashik.github.io Papers discussed: 1) Generalization through memorization: Nearest Neighbor Language Models (https://www.semanticscholar.org/paper/7be8c119dbe065c52125ee7716601751f3116844) 2)Nearest Neighbor Machine Translation (https://www.semanticscholar.org/paper/20d51f8e449b59c7e140f7a7eec9ab4d4d6f80ea)
…
continue reading
145 episoder
Alle episoder
×Velkommen til Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.