Artwork

Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

129 - Transformers and Hierarchical Structure, with Shunyu Yao

35:43
 
Del
 

Manage episode 296551674 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
  continue reading

145 episoder

Artwork
iconDel
 
Manage episode 296551674 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
In this episode, we talk to Shunyu Yao about recent insights into how transformers can represent hierarchical structure in language. Bounded-depth hierarchical structure is thought to be a key feature of natural languages, motivating Shunyu and his coauthors to show that transformers can efficiently represent bounded-depth Dyck languages, which can be thought of as a formal model of the structure of natural languages. We went on to discuss some of the intuitive ideas that emerge from the proofs, connections to RNNs, and insights about positional encodings that may have practical implications. More broadly, we also touched on the role of formal languages and other theoretical tools in modern NLP. Papers discussed in this episode: - Self-Attention Networks Can Process Bounded Hierarchical Languages (https://arxiv.org/abs/2105.11115) - Theoretical Limitations of Self-Attention in Neural Sequence Models (https://arxiv.org/abs/1906.06755) - RNNs can generate bounded hierarchical languages with optimal memory (https://arxiv.org/abs/2010.07515) - On the Practical Computational Power of Finite Precision RNNs for Language Recognition (https://arxiv.org/abs/1805.04908) Shunyu Yao's webpage: https://ysymyth.github.io/ The hosts for this episode are William Merrill and Matt Gardner.
  continue reading

145 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil