Artwork

Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

108 - Data-To-Text Generation, with Verena Rieser and Ondřej Dušek

49:30
 
Del
 

Manage episode 256838975 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
In this episode we invite Verena Rieser and Ondřej Dušek on to talk to us about the complexities of generating natural language when you have some kind of structured meaning representation as input. We talk about when you might want to do this, which is often is some kind of a dialog system, but also generating game summaries, and even some language modeling work. We then talk about why this is hard, which in large part is due to the difficulty of collecting data, and how to evaluate the output of these systems. We then move on to discussing the details of a major challenge that Verena and Ondřej put on, called the end-to-end natural language generation challenge (E2E NLG). This was a dataset of task-based dialog generation focused on the restaurant domain, with some very innovative data collection techniques. They held a shared task with 16 participating teams in 2017, and the data has been further used since. We talk about the methods that people used for the task, and what we can learn today from what methods have been used on this data. Verena's website: https://sites.google.com/site/verenateresarieser/ Ondřej's website: https://tuetschek.github.io/ The E2E NLG Challenge that we talked about quite a bit: http://www.macs.hw.ac.uk/InteractionLab/E2E/
  continue reading

145 episoder

Artwork
iconDel
 
Manage episode 256838975 series 1452120
Indhold leveret af NLP Highlights and Allen Institute for Artificial Intelligence. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af NLP Highlights and Allen Institute for Artificial Intelligence eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
In this episode we invite Verena Rieser and Ondřej Dušek on to talk to us about the complexities of generating natural language when you have some kind of structured meaning representation as input. We talk about when you might want to do this, which is often is some kind of a dialog system, but also generating game summaries, and even some language modeling work. We then talk about why this is hard, which in large part is due to the difficulty of collecting data, and how to evaluate the output of these systems. We then move on to discussing the details of a major challenge that Verena and Ondřej put on, called the end-to-end natural language generation challenge (E2E NLG). This was a dataset of task-based dialog generation focused on the restaurant domain, with some very innovative data collection techniques. They held a shared task with 16 participating teams in 2017, and the data has been further used since. We talk about the methods that people used for the task, and what we can learn today from what methods have been used on this data. Verena's website: https://sites.google.com/site/verenateresarieser/ Ondřej's website: https://tuetschek.github.io/ The E2E NLG Challenge that we talked about quite a bit: http://www.macs.hw.ac.uk/InteractionLab/E2E/
  continue reading

145 episoder

Semua episod

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil