Artwork

Indhold leveret af Zeta Alpha. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Zeta Alpha eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Shallow Pooling for Sparse Labels: the shortcomings of MS MARCO

1:07:17
 
Del
 

Manage episode 355037191 series 3446693
Indhold leveret af Zeta Alpha. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Zeta Alpha eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 episoder

Artwork
iconDel
 
Manage episode 355037191 series 3446693
Indhold leveret af Zeta Alpha. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Zeta Alpha eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this first episode of Neural Information Retrieval Talks, Andrew Yates and Sergi Castellla discuss the paper "Shallow Pooling for Sparse Labels" by Negar Arabzadeh, Alexandra Vtyurina, Xinyi Yan and Charles L. A. Clarke from the University of Waterloo, Canada.

This paper puts the spotlight on the popular IR benchmark MS MARCO and investigates whether modern neural retrieval models retrieve documents that are even more relevant than the original top relevance annotations. The results have important implications and raise the question of to what degree this benchmark is still an informative north star to follow.

Contact: castella@zeta-alpha.com

Timestamps:

00:00 — Introduction.

01:52 — Overview and motivation of the paper.

04:00 — Origins of MS MARCO.

07:30 — Modern approaches to IR: keyword-based, dense retrieval, rerankers and learned sparse representations.

13:40 — What is "better than perfect" performance on MS MARCO?

17:15 — Results and discussion: how often are neural rankers preferred over original annotations on MS MARCO? How should we interpret these results?

26:55 — The authors' proposal to "fix" MS MARCO: shallow pooling

32:40 — How does TREC Deep Learning compare?

38:30 — How do models compare after re-annotating MS MARCO passages?

45:00 — Figure 5 audio description.

47:00 — Discussion on models' performance after re-annotations.

51:50 — Exciting directions in the space of IR benchmarking.

1:06:20 — Outro.

Related material:

- Leo Boystov paper critique blog post: http://searchivarius.org/blog/ir-leaderboards-never-tell-full-story-they-are-still-useful-and-what-can-be-done-make-them-even

- "MS MARCO Chameleons: Challenging the MS MARCO Leaderboard with Extremely Obstinate Queries" https://dl.acm.org/doi/abs/10.1145/3459637.3482011

  continue reading

21 episoder

Semua episod

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil