Artwork

Indhold leveret af Sominath Avhad. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Sominath Avhad eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Data analyst Q&A 12. How can you handle missing values in a dataset?

10:03
 
Del
 

Manage episode 313041437 series 3257233
Indhold leveret af Sominath Avhad. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Sominath Avhad eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
12. How can you handle missing values in a dataset? The sample answer is… 1. Listwise deletion – in listwise deletion method, an entire record is excluded from analysis if any single value is missing 2. Average imputation – use the average value of the responses from the other participants to fill in the missing value 3. Regression substitution – You can use multiple-regression analysis to estimate a missing value 4. Multiple imputation - It creates plausible values based on the correlations for the missing data and then averages the simulated datasets by incorporating random errors in your predications.
  continue reading

90 episoder

Artwork
iconDel
 
Manage episode 313041437 series 3257233
Indhold leveret af Sominath Avhad. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Sominath Avhad eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
12. How can you handle missing values in a dataset? The sample answer is… 1. Listwise deletion – in listwise deletion method, an entire record is excluded from analysis if any single value is missing 2. Average imputation – use the average value of the responses from the other participants to fill in the missing value 3. Regression substitution – You can use multiple-regression analysis to estimate a missing value 4. Multiple imputation - It creates plausible values based on the correlations for the missing data and then averages the simulated datasets by incorporating random errors in your predications.
  continue reading

90 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil