Artwork

Indhold leveret af Kai Kunze. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Kai Kunze eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

UIST 2024: Modulating Heart Activity and Task Performance using Haptic Heartbeat Feedback: A Study Across Four Body Placements

11:15
 
Del
 

Manage episode 446446420 series 3605621
Indhold leveret af Kai Kunze. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Kai Kunze eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Andreia Valente, Dajin Lee, Seungmoon Choi, Mark Billinghurst, and Augusto Esteves. 2024. Modulating Heart Activity and Task Performance using Haptic Heartbeat Feedback: A Study Across Four Body Placements. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST '24). Association for Computing Machinery, New York, NY, USA, Article 25, 1–13. https://doi.org/10.1145/3654777.3676435

This paper explores the impact of vibrotactile haptic feedback on heart activity when the feedback is provided at four different body locations (chest, wrist, neck, and ankle) and with two feedback rates (50 bpm and 110 bpm). A user study found that the neck placement resulted in higher heart rates and lower heart rate variability, and higher frequencies correlated with increased heart rates and decreased heart rate variability. The chest was preferred in self-reported metrics, and neck placement was perceived as less satisfying, harmonious, and immersive. This research contributes to understanding the interplay between psychological experiences and physiological responses when using haptic biofeedback resembling real body signals.

https://dl.acm.org/doi/10.1145/3654777.3676435

  continue reading

41 episoder

Artwork
iconDel
 
Manage episode 446446420 series 3605621
Indhold leveret af Kai Kunze. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Kai Kunze eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Andreia Valente, Dajin Lee, Seungmoon Choi, Mark Billinghurst, and Augusto Esteves. 2024. Modulating Heart Activity and Task Performance using Haptic Heartbeat Feedback: A Study Across Four Body Placements. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (UIST '24). Association for Computing Machinery, New York, NY, USA, Article 25, 1–13. https://doi.org/10.1145/3654777.3676435

This paper explores the impact of vibrotactile haptic feedback on heart activity when the feedback is provided at four different body locations (chest, wrist, neck, and ankle) and with two feedback rates (50 bpm and 110 bpm). A user study found that the neck placement resulted in higher heart rates and lower heart rate variability, and higher frequencies correlated with increased heart rates and decreased heart rate variability. The chest was preferred in self-reported metrics, and neck placement was perceived as less satisfying, harmonious, and immersive. This research contributes to understanding the interplay between psychological experiences and physiological responses when using haptic biofeedback resembling real body signals.

https://dl.acm.org/doi/10.1145/3654777.3676435

  continue reading

41 episoder

All episodes

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil