Indhold leveret af Foojay.io. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Foojay.io eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !
Gå offline med appen Player FM !
Execute Java code with TornadoVM on CPUs, GPUs, and FPGAs (#17)
MP3•Episode hjem
Manage episode 367848429 series 3366865
Indhold leveret af Foojay.io. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Foojay.io eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
TornadoVM is a programming and execution framework for offloading and running JVM applications on multi-core CPUs, GPUs, and FPGAs. With the same code, some of your existing program code can be executed hundreds of times faster!
Guests
- Juan Fumero, TornadoVM Lead Architect
- Christos Kotselidis, TornadoVM Project Leader
- Thanos Stratikopoulos, TornadoVM Senior Solutions Architect
- Jakob Jenkov
Podcast
- Host: Erik Costlow
- Production: Frank Delporte
Content
- 00’00 Intro
- 00’36 Introduction of the guests
- 04’26 What is TornadoVM?
- 05’54 How applications can make use of the acceleration provided by TornadoVM
- 11’48 The difference between CPU threads and GPU instruction chain
- 13’42 Possible use cases for TornadoVM
- 15’23 Results on Apple M1
- 17’19 Can TornadoVM be used in cloud environments
- 21’18 How to use the API
- 24’41 Jakobs view of what would be a good match between TornadoVM and cloud usage on AWS Lambdas
- 30’54 The complexity of GPU and FPGA programming languages and handling the differences between different architectures of GPUs, CPUs, and FPGAs
- 40’28 How TornadoVM could be used to heat up buildings, help to reduce the total cloud cost for companies, and run ChatGPT
- 43’30 Relationship between project Panama and TornadoVM
- 48’10 How to get started with TornadoVM
- 54’41 Outro
63 episoder
MP3•Episode hjem
Manage episode 367848429 series 3366865
Indhold leveret af Foojay.io. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Foojay.io eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
TornadoVM is a programming and execution framework for offloading and running JVM applications on multi-core CPUs, GPUs, and FPGAs. With the same code, some of your existing program code can be executed hundreds of times faster!
Guests
- Juan Fumero, TornadoVM Lead Architect
- Christos Kotselidis, TornadoVM Project Leader
- Thanos Stratikopoulos, TornadoVM Senior Solutions Architect
- Jakob Jenkov
Podcast
- Host: Erik Costlow
- Production: Frank Delporte
Content
- 00’00 Intro
- 00’36 Introduction of the guests
- 04’26 What is TornadoVM?
- 05’54 How applications can make use of the acceleration provided by TornadoVM
- 11’48 The difference between CPU threads and GPU instruction chain
- 13’42 Possible use cases for TornadoVM
- 15’23 Results on Apple M1
- 17’19 Can TornadoVM be used in cloud environments
- 21’18 How to use the API
- 24’41 Jakobs view of what would be a good match between TornadoVM and cloud usage on AWS Lambdas
- 30’54 The complexity of GPU and FPGA programming languages and handling the differences between different architectures of GPUs, CPUs, and FPGAs
- 40’28 How TornadoVM could be used to heat up buildings, help to reduce the total cloud cost for companies, and run ChatGPT
- 43’30 Relationship between project Panama and TornadoVM
- 48’10 How to get started with TornadoVM
- 54’41 Outro
63 episoder
Tất cả các tập
×Velkommen til Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.