Artwork

Indhold leveret af David Such. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af David Such eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

LLMs - Fancy Autocorrect or can they actually Reason?

14:58
 
Del
 

Manage episode 469876863 series 3620285
Indhold leveret af David Such. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af David Such eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Send us a text

In this episode, we discuss the limitations of Large Language Models (LLMs) in areas like deductive reasoning, analogy-making, and ethical judgment. While today’s AI models excel at recognizing statistical patterns in vast datasets, they lack genuine understanding or an internal model of the world. Researchers are tackling these challenges through innovations such as causal AI, inference-time computing, and neuro-symbolic approaches, all aimed at enabling AI to move beyond mere pattern recognition towards true reasoning.

We explore how these emerging technologies, including causal inference, inference-time computing, and neuro-symbolic integration, are pushing AI closer to human-like, “System 2” reasoning. Will these advancements finally bridge the gap between AI imitation and genuine reasoning? Tune in as we dive into the future of artificial intelligence and explore what it will take for machines to truly think.

Support the show

If you are interested in learning more then please subscribe to the podcast or head over to https://medium.com/@reefwing, where there is lots more content on AI, IoT, robotics, drones, and development. To support us in bringing you this material, you can buy me a coffee or just provide feedback. We love feedback!

  continue reading

69 episoder

Artwork
iconDel
 
Manage episode 469876863 series 3620285
Indhold leveret af David Such. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af David Such eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Send us a text

In this episode, we discuss the limitations of Large Language Models (LLMs) in areas like deductive reasoning, analogy-making, and ethical judgment. While today’s AI models excel at recognizing statistical patterns in vast datasets, they lack genuine understanding or an internal model of the world. Researchers are tackling these challenges through innovations such as causal AI, inference-time computing, and neuro-symbolic approaches, all aimed at enabling AI to move beyond mere pattern recognition towards true reasoning.

We explore how these emerging technologies, including causal inference, inference-time computing, and neuro-symbolic integration, are pushing AI closer to human-like, “System 2” reasoning. Will these advancements finally bridge the gap between AI imitation and genuine reasoning? Tune in as we dive into the future of artificial intelligence and explore what it will take for machines to truly think.

Support the show

If you are interested in learning more then please subscribe to the podcast or head over to https://medium.com/@reefwing, where there is lots more content on AI, IoT, robotics, drones, and development. To support us in bringing you this material, you can buy me a coffee or just provide feedback. We love feedback!

  continue reading

69 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil