Artwork

Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Decoding Transformers' Superiority over RNNs in NLP Tasks

9:38
 
Del
 

Manage episode 429693621 series 3474670
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 episoder

Artwork
iconDel
 
Manage episode 429693621 series 3474670
Indhold leveret af HackerNoon. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af HackerNoon eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 episoder

Kaikki jaksot

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil