Artwork

Indhold leveret af Databricks. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Databricks eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Reward Models | Data Brew | Episode 40

39:58
 
Del
 

Manage episode 472480859 series 2814833
Indhold leveret af Databricks. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Databricks eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode, Brandon Cui, Research Scientist at MosaicML and Databricks, dives into cutting-edge advancements in AI model optimization, focusing on Reward Models and Reinforcement Learning from Human Feedback (RLHF).
Highlights include:
- How synthetic data and RLHF enable fine-tuning models to generate preferred outcomes.
- Techniques like Policy Proximal Optimization (PPO) and Direct Preference
Optimization (DPO) for enhancing response quality.
- The role of reward models in improving coding, math, reasoning, and other NLP tasks.
Connect with Brandon Cui:
https://www.linkedin.com/in/bcui19/

  continue reading

42 episoder

Artwork
iconDel
 
Manage episode 472480859 series 2814833
Indhold leveret af Databricks. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Databricks eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this episode, Brandon Cui, Research Scientist at MosaicML and Databricks, dives into cutting-edge advancements in AI model optimization, focusing on Reward Models and Reinforcement Learning from Human Feedback (RLHF).
Highlights include:
- How synthetic data and RLHF enable fine-tuning models to generate preferred outcomes.
- Techniques like Policy Proximal Optimization (PPO) and Direct Preference
Optimization (DPO) for enhancing response quality.
- The role of reward models in improving coding, math, reasoning, and other NLP tasks.
Connect with Brandon Cui:
https://www.linkedin.com/in/bcui19/

  continue reading

42 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil