Artwork

Indhold leveret af CCC media team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af CCC media team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Privatsphäreschonende Gesundheitsdatenverarbeitung (DS2024)

41:57
 
Del
 

Manage episode 441255449 series 2475293
Indhold leveret af CCC media team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af CCC media team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

1776 episoder

Artwork
iconDel
 
Manage episode 441255449 series 2475293
Indhold leveret af CCC media team. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af CCC media team eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Kann man mit Gesundheitsdaten forschen, ohne die Privatsphäre der ganzen Bevölkerung zu verletzen? Der europäische Gesundheitsdatenraum steht vor der Tür und es sieht zur Zeit nicht danach aus, dass wir mit dessen Umsetzung zufrieden sein können. Gesundheitsdaten aller europäischen Versicherten werden zentral gesammelt und nicht nur für die individuelle medizinische Versorgung gevorratsdatenspeichert, sondern auch für die Wissenschaft. Dabei ist hier explizit nicht nur akademische, sondern auch privatwirtschaftliche Wissenschaft gemeint. Das heißt, nicht nur Universitäten werden auf die Daten zugreifen können, sondern zum Beispiel auch die Pharmaindustrie und die ganz Großen wie Apple oder Google. Unter dem Vorwand der Verbesserung des Nutzungserlebnisses von proprietären Gesundheits-Apps (vorauseilende Mutmaßung der Speaker) werden die persönlichsten aller Daten in Hände gegeben, in denen sie wirklich nichts zu suchen haben. Ist damit alles verloren? Wir sagen nein! In diesem Vortrag präsentieren wir, wie man mit Hilfe von probabilistischen Datenstrukturen personenbezogene Daten verarbeiten kann, ohne die Privatsphäre der jeweiligen Personen zu beeinträchtigen. Dazu zeigen wir die Ergebnisse einer Fallstudie mit zufallsgenerierten Gesundheitsdaten. Wir möchten mit dem Vortrag deutlich machen, dass es durchaus möglich ist, personenbezogene Daten unter gewissen Voraussetzungen in fremde Hände geben zu können. Licensed to the public under https://creativecommons.org/licenses/by/4.0/de/ about this event: https://talks.datenspuren.de/ds24/talk/NGTE3G/
  continue reading

1776 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning