Gå offline med appen Player FM !
"Got Guts" The Micro Version: Electromechanical Coupling of the In-Vivo Pylorus
Manage episode 448032436 series 3332773
Join coauthors Sam Simmonds, Ashton Matthee, and Timothy R. Angeli-Gordon as they delve into their recently published research, "Electromechanical Coupling and Anatomy of the In Vivo Gastroduodenal Junction." In this episode, they explore cutting-edge techniques like electrical mapping, impedance planimetry, and histological analysis to investigate the complex dynamics of the gastroduodenal junction. Discover how contractions in the terminal antrum and pyloric sphincter correlate with gastric slow waves, while the duodenum experiences bursts of spike activity that trigger oscillating contractions. The team discusses their intriguing hypothesis regarding the relative scarcity of myenteric interstitial cells of Cajal in the pylorus, which may hinder coupling between antral and duodenal slow waves.
Electromechanical coupling and anatomy of the in vivo gastroduodenal junction Sam Simmonds, Ashton Matthee, Jarrah M. Dowrick, Andrew J. Taberner, Peng Du, and Timothy R. Angeli-Gordon
American Journal of Physiology-Gastrointestinal and Liver Physiology 2024 327:1, G93-G104
40 episoder
"Got Guts" The Micro Version: Electromechanical Coupling of the In-Vivo Pylorus
American Journal of Physiology-Gastrointestinal and Liver Physiology Podcast
Manage episode 448032436 series 3332773
Join coauthors Sam Simmonds, Ashton Matthee, and Timothy R. Angeli-Gordon as they delve into their recently published research, "Electromechanical Coupling and Anatomy of the In Vivo Gastroduodenal Junction." In this episode, they explore cutting-edge techniques like electrical mapping, impedance planimetry, and histological analysis to investigate the complex dynamics of the gastroduodenal junction. Discover how contractions in the terminal antrum and pyloric sphincter correlate with gastric slow waves, while the duodenum experiences bursts of spike activity that trigger oscillating contractions. The team discusses their intriguing hypothesis regarding the relative scarcity of myenteric interstitial cells of Cajal in the pylorus, which may hinder coupling between antral and duodenal slow waves.
Electromechanical coupling and anatomy of the in vivo gastroduodenal junction Sam Simmonds, Ashton Matthee, Jarrah M. Dowrick, Andrew J. Taberner, Peng Du, and Timothy R. Angeli-Gordon
American Journal of Physiology-Gastrointestinal and Liver Physiology 2024 327:1, G93-G104
40 episoder
Alle episoder
×Velkommen til Player FM!
Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.