Artwork

Indhold leveret af Charles M Wood. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Charles M Wood eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Navigating Common Pitfalls in Data Science: Lessons from Pierpaolo Hipolito - ML 183

55:08
 
Del
 

Manage episode 462892161 series 2977446
Indhold leveret af Charles M Wood. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Charles M Wood eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

208 episoder

Artwork
iconDel
 
Manage episode 462892161 series 2977446
Indhold leveret af Charles M Wood. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Charles M Wood eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Welcome to another insightful episode of Top End Devs, where we delve into the fascinating world of machine learning and data science. In this episode, host Charles Max Wood is joined by special guest Pierpaolo Hipolito, a data scientist at the SAS Institute in the UK. Together, they explore the intriguing paradoxes of data science, discussing how these paradoxes can impact the accuracy of machine learning models and providing insights on how to mitigate them.
Pierpaolo shares his expertise on causal reasoning in machine learning, drawing from his master's research and contributions to Towards Data Science and other notable publications. He elaborates on the complexities of data modeling during the early stages of the COVID-19 pandemic, highlighting the use of simulation and synthetic data to address data sparsity.
Throughout the conversation, the focus remains on the importance of understanding the underlying system being modeled, the role of feature engineering, and strategies for avoiding common pitfalls in data science. Whether you are a seasoned data scientist or just starting out, this episode offers valuable perspectives on enhancing the reliability and interpretability of your machine learning models.
Tune in for a deep dive into the paradoxes of data science, practical advice on feature interaction, and the importance of accurate data representation in achieving meaningful insights.
Become a supporter of this podcast: https://www.spreaker.com/podcast/adventures-in-machine-learning--6102041/support.
  continue reading

208 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil