Mini-Omni2: Towards Open-source GPT-4o with Vision, Speech and Duplex Capabilities
MP3•Episode hjem
Manage episode 447807910 series 2954468
Indhold leveret af Rob. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Rob eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
GPT-4o, an all-encompassing model, represents a milestone in the development of large multi-modal language models. It can understand visual, auditory, and textual modalities, directly output audio, and support flexible duplex interaction. Models from the open-source community often achieve some functionalities of GPT-4o, such as visual understanding and voice chat. Nevertheless, training a unified model that incorporates all modalities is challenging due to the complexities of multi-modal data, intricate model architectures, and training processes. In this paper, we introduce Mini-Omni2, a visual-audio assistant capable of providing real-time, end-to-end voice responses to visoin and audio queries. By integrating pretrained visual and auditory encoders, Mini-Omni2 maintains performance in individual modalities. We propose a three-stage training process to align modalities, allowing the language model to handle multi-modal inputs and outputs after training on a limited dataset. For interaction, we introduce a command-based interruption mechanism, enabling more flexible interaction with users. To the best of our knowledge, Mini-Omni2 is one of the closest reproductions of GPT-4o, which have similar form of functionality, and we hope it can offer valuable insights for subsequent research.
2024: Zhifei Xie, Changqiao Wu
https://arxiv.org/pdf/2410.11190
…
continue reading
2024: Zhifei Xie, Changqiao Wu
https://arxiv.org/pdf/2410.11190
299 episoder