Artwork

Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

Least-To-Most Prompting Enables Complex Reasoning in Large Language Models

16:08
 
Del
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (21d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424087976 series 3498845
Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.

Source:

https://arxiv.org/abs/2205.10625

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Least-To-Most Prompting Enables Complex Reasoning in Large Language Models (00:00:00)

2. ABSTRACT (00:00:17)

3. 1 INTRODUCTION (00:01:37)

4. 2 LEAST-TO-MOST PROMPTING (00:05:38)

5. 3 RESULTS (00:07:41)

85 episoder

Artwork
iconDel
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (21d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424087976 series 3498845
Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

Chain-of-thought prompting has demonstrated remarkable performance on various natural language reasoning tasks. However, it tends to perform poorly on tasks which requires solving problems harder than the exemplars shown in the prompts. To overcome this challenge of easy-to-hard generalization, we propose a novel prompting strategy, least-to-most prompting. The key idea in this strategy is to break down a complex problem into a series of simpler subproblems and then solve them in sequence. Solving each subproblem is facilitated by the answers to previously solved subproblems. Our experimental results on tasks related to symbolic manipulation, compositional generalization, and math reasoning reveal that least-to-most prompting is capable of generalizing to more difficult problems than those seen in the prompts. A notable finding is that when the GPT-3 code-davinci-002 model is used with least-to-most prompting, it can solve the compositional generalization benchmark SCAN in any split (including length split) with an accuracy of at least 99% using just 14 exemplars, compared to only 16% accuracy with chain-of-thought prompting. This is particularly noteworthy because neural-symbolic models in the literature that specialize in solving SCAN are trained on the entire training set containing over 15,000 examples. We have included prompts for all the tasks in the Appendix.

Source:

https://arxiv.org/abs/2205.10625

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Least-To-Most Prompting Enables Complex Reasoning in Large Language Models (00:00:00)

2. ABSTRACT (00:00:17)

3. 1 INTRODUCTION (00:01:37)

4. 2 LEAST-TO-MOST PROMPTING (00:05:38)

5. 3 RESULTS (00:07:41)

85 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil