Artwork

Player FM - Internet Radio Done Right
Checked 21d ago
Tilføjet one år siden
Looks like the publisher may have taken this series offline or changed its URL. Please contact support if you believe it should be working, the feed URL is invalid, or you have any other concerns about it.
Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !
icon Daily Deals

Toy Models of Superposition

41:43
 
Del
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (21d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424087973 series 3498845
Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an “ideal” ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout. Empirically, in models we have studied, some of the neurons do cleanly map to features. But it isn't always the case that features correspond so cleanly to neurons, especially in large language models where it actually seems rare for neurons to correspond to clean features. This brings up many questions. Why is it that neurons sometimes align with features and sometimes don't? Why do some models and tasks have many of these clean neurons, while they're vanishingly rare in others?

In this paper, we use toy models — small ReLU networks trained on synthetic data with sparse input features — to investigate how and when models represent more features than they have dimensions. We call this phenomenon superposition . When features are sparse, superposition allows compression beyond what a linear model would do, at the cost of "interference" that requires nonlinear filtering.

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Toy Models of Superposition (00:00:00)

2. Definitions and Motivation: Features, Directions, and Superposition (00:00:11)

3. Empirical Phenomena (00:03:59)

4. What are Features? (00:06:08)

5. Features as Directions (00:09:20)

6. Privileged vs Non-privileged Bases (00:13:06)

7. The Superposition Hypothesis (00:15:38)

8. Summary: A Hierarchy of Feature Properties (00:20:08)

9. Demonstrating Superposition (00:21:45)

10. Experiment Setup (00:22:25)

11. Basic Results (00:29:40)

12. Mathematical Understanding (00:35:44)

85 episoder

Artwork
iconDel
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on January 02, 2025 12:05 (21d ago)

What now? This series will be checked again in the next hour. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 424087973 series 3498845
Indhold leveret af BlueDot Impact. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af BlueDot Impact eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

It would be very convenient if the individual neurons of artificial neural networks corresponded to cleanly interpretable features of the input. For example, in an “ideal” ImageNet classifier, each neuron would fire only in the presence of a specific visual feature, such as the color red, a left-facing curve, or a dog snout. Empirically, in models we have studied, some of the neurons do cleanly map to features. But it isn't always the case that features correspond so cleanly to neurons, especially in large language models where it actually seems rare for neurons to correspond to clean features. This brings up many questions. Why is it that neurons sometimes align with features and sometimes don't? Why do some models and tasks have many of these clean neurons, while they're vanishingly rare in others?

In this paper, we use toy models — small ReLU networks trained on synthetic data with sparse input features — to investigate how and when models represent more features than they have dimensions. We call this phenomenon superposition . When features are sparse, superposition allows compression beyond what a linear model would do, at the cost of "interference" that requires nonlinear filtering.

Narrated for AI Safety Fundamentals by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Toy Models of Superposition (00:00:00)

2. Definitions and Motivation: Features, Directions, and Superposition (00:00:11)

3. Empirical Phenomena (00:03:59)

4. What are Features? (00:06:08)

5. Features as Directions (00:09:20)

6. Privileged vs Non-privileged Bases (00:13:06)

7. The Superposition Hypothesis (00:15:38)

8. Summary: A Hierarchy of Feature Properties (00:20:08)

9. Demonstrating Superposition (00:21:45)

10. Experiment Setup (00:22:25)

11. Basic Results (00:29:40)

12. Mathematical Understanding (00:35:44)

85 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

icon Daily Deals
icon Daily Deals
icon Daily Deals

Hurtig referencevejledning

Lyt til dette show, mens du udforsker
Afspil