Artwork

Indhold leveret af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.
Player FM - Podcast-app
Gå offline med appen Player FM !

The Path to Responsible AI with Julia Stoyanovich of NYU

48:09
 
Del
 

Manage episode 398318406 series 2954151
Indhold leveret af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

26 episoder

Artwork
iconDel
 
Manage episode 398318406 series 2954151
Indhold leveret af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger. Alt podcastindhold inklusive episoder, grafik og podcastbeskrivelser uploades og leveres direkte af Damien Deighan and Philipp Diesinger, Damien Deighan, and Philipp Diesinger eller deres podcastplatformspartner. Hvis du mener, at nogen bruger dit ophavsretligt beskyttede værk uden din tilladelse, kan du følge processen beskrevet her https://da.player.fm/legal.

In this enlightening episode, Dr. Julia Stoyanovich delves into the world of responsible AI, exploring the ethical, societal, and technological implications of AI systems. She underscores the importance of global regulations, human-centric decision-making, and the proactive management of biases and risks associated with AI deployment. Through her expert lens, Dr. Stoyanovich advocates for a future where AI is not only innovative but also equitable, transparent, and aligned with human values.

Julia is an Institute Associate Professor at NYU in both the Tandon School of Engineering, and the Center for Data Science. In addition she is Director of the Center for Responsible AI also at NYU. Her research focuses on responsible data management, fairness, diversity, transparency, and data protection in all stages of the data science lifecycle.

Episode Summary -

  1. The Definition of Responsible AI
  2. Example of ethical AI in the medical world - Fast MRI technology
  3. Fairness and Diversity in AI
  4. The role of regulation - What it can and can’t do
  5. Transparency, Bias in AI models and Data Protection
  6. The dangers of Gen AI Hype and problematic AI narratives from the tech industry
  7. The impotence of humans in ensuring ethical development
  8. Why “Responsible AI” is actually a bit of a misleading term
  9. What Data & AI leaders can do to practise Responsible AI

  continue reading

26 episoder

Wszystkie odcinki

×
 
Loading …

Velkommen til Player FM!

Player FM is scanning the web for high-quality podcasts for you to enjoy right now. It's the best podcast app and works on Android, iPhone, and the web. Signup to sync subscriptions across devices.

 

Hurtig referencevejledning